

LA-UR-14-29102

Approved for public release; distribution is unlimited.

Title: Defense Systems and Analysis Division Overview November 2014

Author(s): Cremer, Charles David

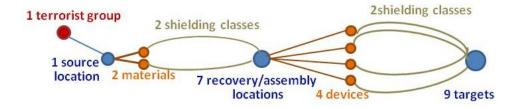
Intended for: Internal briefing to post docs

Issued: 2014-11-25

10 TEARS OF CREATING TOMORROW

Defense Systems and Analysis Division Overview

November 2014


UNCLASSIFIED

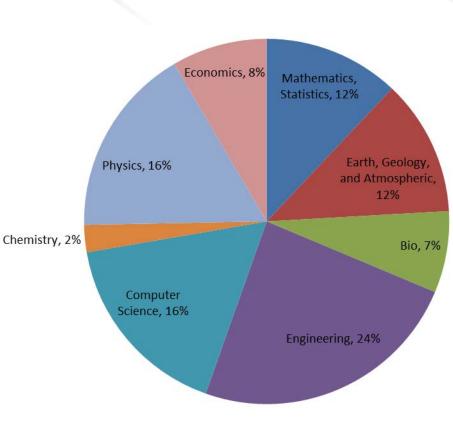
Mission

- We solve national security challenges by applying simulation, modeling and analysis to complex systems and by providing integrated system solutions
- Our sponsors include
 - Department of Defense
 - Department of Homeland Security
 - Intelligence Community
 - Nuclear weapons program

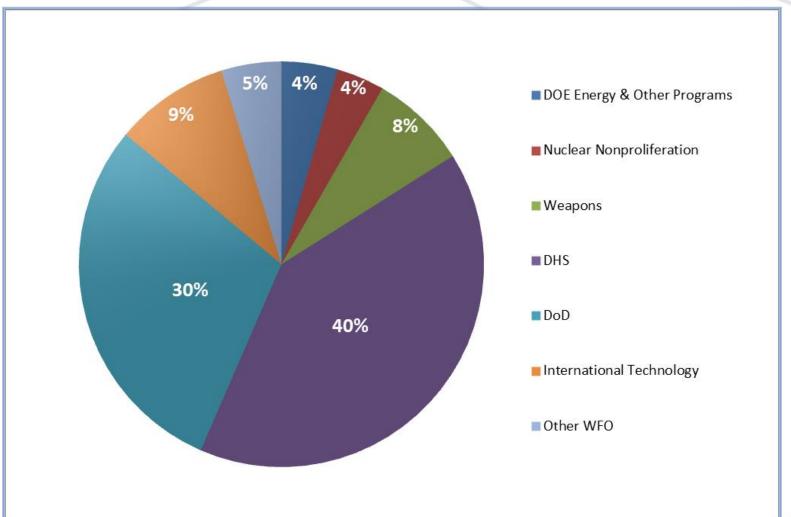
CBR Dispersion Modeling

Competencies

- Complex systems modeling and simulations of engineered, physical and social systems
 - Engineered Bio Systems
 - Resilient Infrastructure Systems Power, Water, Transportation
 - Urban Environments
 - Epidemic modeling, CBRE Dispersion, Population Mobility
 - Terrorist Networks
- Integrated systems for field deployment
 - Persistent surveillance
 - Bio surveillance, including assay testing
- Data analytics
 - Decision support tools
 - Situational awareness tools
- Cyber-physical security



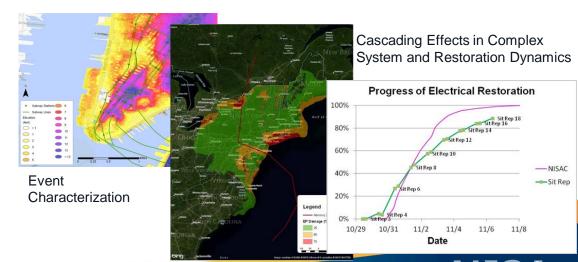
Demographics


Division-wide

- 53 PhD, 17 Masters, 15 Bachelors
- 24% Engineering
- 18% Chemistry and Physics
- 16% Computer & Information Sciences
- 12% Earth, Environmental, Atmospheric
- 12% Mathematics, Statistics
- 8% Economics
- 7% Biology
- 2% Chemistry

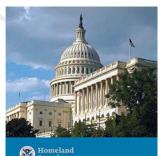
Funding

Recent Projects



DOE Grid Science

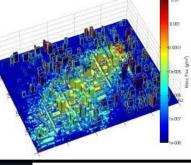
- Interdisciplinary complex system research and development project to understand future energy system resilience
- Power System Engineering,
 Mechanical Engineering, Physics,
 Computer Science, and Optimization
- | Continuum Dynamics | Fig. 1/2 Fig. 1/


National Infrastructure Simulation and Analysis Center

- National security project focused on improving infrastructure system resilience to all-hazards
- Power System Engineering,
 Mechanical Engineering, Civil
 Engineering, Physics, Computer
 Science, and Operations Research

Recent Projects Defense Systems for Global Health Security

- BioWatch: DHS program to mitigate the threat of a bio-attacks in major US cities.
- Bio Event Reconstruction Team (BERT) & Sensor Siting – Rapid response team providing critical data in the event of a bio threat. Complex analysis to determine optimal placement of limited sensor capabilities.
- Quick Urban & Industrial Complex (QUIC): Internationally utilized tool providing fast-running state-of-the-art building and terrain-aware atmospheric dispersion modeling of CBR plumes.
- Biosurveillance Resource Directory: Webhosted directory that links local, national, and global biosurveillance communities for early detection, situational awareness, and consequence management of health threats.
- Engineered Bio Systems: Rapid assessment of drug interactions without animal trials. Advanced research in human/machine interfaces.

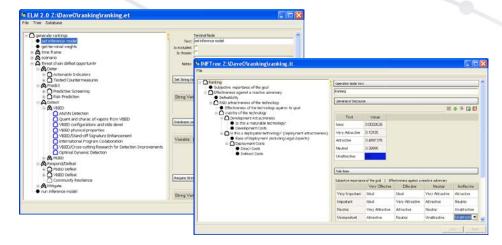


Security

2005 National BioWatch Workshop

August 16-18, 2005

Para Manager CD



Recent Projects

- Extensible Logic Modeling
 - Formal specification-enabled expert elicitation
 - Comprehensive, detailed scenario enumeration made tractable
 - Threat assessments, vulnerability assessments, consequence estimation
 - Fully extensible; patented method
- Probabilistic Effectiveness Methodology
 - Unique national capability to perform integrated assessment of many diverse factors that contribute to the nation's risk of terrorist nuclear attack
 - National Academies reviewed

Potential Opportunities

- Persons with strong physics or engineering background, with interest in holistic systems analysis applied research (especially for global architectures of nuclear detectors)
- Computer scientist interested and/or experienced in cloud computing
- Persons with strong skills in software/GUI development for application of physics based models
- Computer scientist or applied mathematician interested in social media and predictive epidemiology
- Power system or mechanical engineer interested in research, development and application of models of electric power and natural gas transmission and distribution systems
- Electrical or mechanical engineer interested in research, development and application of models of cyber-physical systems
- Civil Engineer interested in research, development and application of models of water distribution and wastewater collection systems
- Computer scientist, operations researcher, or applied mathematician interested in research into large-scale nonlinear, mixed integer optimization. Application focuses include complex engineered networks (power, water, or natural gas systems) with problems related to system design, system resilience, interdiction and system control

Contact: David Cremer cdcremer@lanl.gov